A Built-In Self-Repair Scheme for Semiconductor Memories with 2-D Redundancy
نویسندگان
چکیده
Embedded memories are among the most widely used cores in current system-on-chip (SOC) implementations. Memory cores usually occupy a significant portion of the chip area, and dominate the manufacturing yield of the chip. Efficient yield-enhancement techniques for embedded memories thus are important for SOC. In this paper we present a built-in self-repair (BISR) scheme for semiconductor memories with 2-D redundancy structures. The BISR design is composed of a built-in self-test (BIST) module and a built-in redundancy analysis (BIRA) module. Our BIST circuit supports three test modes: the 1) main memory testing, 2) spare memory testing, and 3) repair modes. The BIRA module executes the proposed redundancy analysis (RA) algorithm for RAM with a 2-D redundancy structure, i.e., spare rows and spare columns. The BIRA module also serves as the reconfiguration (address remapping) unit in the normal mode. Experimental results show that a high repair rate (i.e., the ratio of the number of repaired memories to the number of defective memories) is achieved with the proposed RA algorithm and BISR scheme. The BISR circuit has a low area overhead—about 4.6% for an 8K 64 SRAM.
منابع مشابه
Embedded Memory Test Strategies and Repair
The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing. In the proposed m...
متن کاملSram Memory Testing Technique Using Bisr Scheme
Random Access Memory is major component in present day SOC, by Improving the yield of RAM improves the yield of SOC. So the repairable memories play a vital role in improving the yield of chip. Built-in self-repair (BISR) technique has been widely used to repair embedded random access memories (Ram's). If each repairable RAM uses one self contained BISR circuit (Dedicated BISR scheme), then the...
متن کاملFPGA Implementation of SRAM Memory Testing Technique Using BISR Scheme
As RAM is major component in present day SOC, by Improving the yield of RAM improves the yield of SOC. So the repairable memories play a vital role in improving the yield of chip .Built-in self-repair (BISR) technique has been widely used to repair embedded random access memories (RAMs). If each repairable RAM uses one self contained BISR circuit (Dedicated BISR scheme), then the area cost of B...
متن کاملA Built-In Redundancy-Analysis Scheme for RAMs with Two-Level Redundancy
With the increasing demand of memories in system-onchip (SOC) designs, developing efficient yield-improvement techniques for memories becomes an important issue. Built-in self-repair (BISR) technique has become a popular method for repairing defective embedded memories. To allocate redundancy efficiently, built-in redundancy-analysis (BIRA) function is usually needed for designing a BISR scheme...
متن کاملBuilt - in self - repair ( BISR ) technique widely Used to repair embedded random access memories ( RAMs )
With the trend of SOC technology, high density and high capacity embedded memories are required for successful implementation of the system. In modern SOCs, embedded memories occupy the largest part of the chip area and include an even larger amount of active devices. As memories are designed very tightly to the limits of the technology, they are more prone to failures than logic. Thus, memorie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003